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K. Czo"czyński, A. Stefański�, P. Perlikowski, T. Kapitaniak

Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz, Poland

Accepted 11 August 2008

The peer review of this article was organised by the Guest Editor

Available online 27 September 2008
Abstract

We consider the dynamics of a number of externally excited chaotic oscillators suspended on an elastic structure. We

show that for the given conditions of oscillations of the structure, initially uncorrelated chaotic oscillators become periodic

and synchronous in clusters. In the periodic regime, we have observed multistability as two or four different attractors

coexist in each cluster. A mismatch of the excitation frequency in the oscillators leads to the beating-like behaviour. We

argue that the observed phenomena are generic in the parameter space and independent of the number of oscillators and

their location on the elastic structure.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

An attractor is a fundamental concept in the theory of dynamical systems. Consider the dynamical system

dx

dt
¼ f ðxÞ (1)

where f ðxÞ is a function which fulfils all the conditions necessary for Eq. (1) to have a unique solution for the
given initial condition xðt ¼ 0Þ and x 2 Rn. Let xðtÞ be a solution of Eq. (1), for an open set of initial
conditions. The n-dimensional real space Rn is a phase space of Eq. (1). The minimum subset A � Rn with a
property that xðtÞ ! A as t!1 is called an attractor. Typical attractors of system (1) are fixed points
(equilibria), limit cycles (periodic behaviour), tori (quasiperiodic behaviour) and strange attractors (chaotic
behaviour). One of the characteristic features of a nonlinear system is the simultaneous existence of different
attractors, i.e., for the given parameter values depending on the initial conditions, the system trajectory can go
to a different attractor. This feature is called multistability. To understand the dynamical behaviour of such
systems, it is necessary to calculate the basin of attraction for each coexisting attractor. In a number of cases
the structure of basins and their bifurcations leads to the unexpected dynamical uncertainty; one cannot a piori

predict the attractor on which the system might evolve. Multistability is common in higher-dimensional
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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systems: in particular, it can be observed in coupled dynamical systems [1–3]. Such systems are extensively
studied in relation to the idea of synchronization.

Synchronization is a fundamental nonlinear phenomenon which is observed in science and engineering
[4–6]. In the last two decades it has been demonstrated that any set of chaotic systems can synchronize by
linking them with mutual coupling or with a common signal or signals [7–10]. In mechanical systems the
synchronization was discovered in the XVIIth century by the Dutch researcher, Christian Huygens. He
showed that a couple of mechanical clocks hanging from a common support were synchronized [11].
Currently, the high number of research activities in the field of synchronization reflects the importance of this
subject. Some of the classical mechanical engineering applications are mentioned in [6]. Recently a promising
direction has been to employ control theory to handle synchronization as a control problem. Particularly this
approach can be applied in robotics when two or more robot-manipulators have to operate synchronously in a
hazardous environment [12,13]. Pogromsky et al. [14] designed a controller for a synchronization problem
comprising two pendula suspended on an elastically supported rigid beam.

In the current study we consider the dynamics of n nonlinear oscillators located on (coupled through) an
elastic structure. We present a numerical study of a realistic model of identical double well-potential Duffing
oscillators suspended on an elastic beam. The nonlinear oscillators are externally excited by a periodic signal
with a frequency Z. Each oscillator can be considered as a subsystem with its own dynamics.

A double-well potential Duffing oscillator has been taken as an example of a system that shows bistable instability
in its periodic behaviour and a single chaotic attractor. Bistability of oscillators is important in our studies as it
creates a number of coexisting attractors in a coupled system. It should be mentioned here that the details of the
physical realisation of such double-well potential Duffing oscillators have not been the subject of our consideration.

Coupling through an elastic structure allows one to investigate how the dynamics of the particular oscillator
is influenced by the dynamics of other subsystems and this is the main purpose of our research. Preliminary
results of this problem have been presented in our previous works [15,16] in which we consider the dynamics of
two Duffing and two van der Pol oscillators suspended on a beam and identify a simple mechanism of mutual
interaction. Here, we concentrate on the possibility of making the oscillators behave periodically, the existence
of different attractors, the creation of clusters (groups of oscillators with synchronous behaviour) and the
influence of frequency mismatch on the behaviour of oscillators.

We would like to point out that we have concentrated on the analysis of a quite general model of the
coupling through the elastic structure. This coupling is common in mechanical systems. The above-mentioned
Huygens clocks are a classical example but the same coupling occurs for example when a number of machines
operate in the same hall, or a crowd of people walks on a bridge.

We show that for the given conditions of the elastic structure oscillations, (i) initially uncorrelated chaotic
oscillators become periodic, i.e., the behaviour of nonlinear oscillators becomes periodic as a result of an
interaction with the elastic structure, (ii) symmetrical oscillators are synchronized creating clusters and, (iii) in
the case of a mismatch of the excitation frequency in each oscillator it shows a chaotic beating-like behaviour.
We argue that the observed phenomena are generic in the parameter space and independent of the number of
oscillators and the method of discretisation of the continuous structure.

The paper is organised as follows: in Section 2 we describe the considered model. Section 3 presents the
dynamics of two Duffing oscillators connected with the elastic beam and describes the phenomenon of making
the oscillators behave periodically. The multistability of the system is discussed in Section 4. Section 5 deals
with the influence of the mismatch of the excitation frequency Z on the behaviour of oscillators. Finally, our
results are summarised in Section 6.
2. The model

The system consists of an array of n oscillators which are suspended on an elastic beam as shown in
Fig. 1(a). Its dynamics can be described in the following general form:

q2zðx; tÞ
qt2

þ
g

o
qzðx; tÞ

qt
þ d�2

q4zðx; tÞ
qx4

¼
Xn

i¼1

piðx; tÞ (2)
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Fig. 1. Double-well potential Duffing oscillators suspended on the elastic beam: (a) continuous model and (b) discrete model.

K. Czo!czyński et al. / Journal of Sound and Vibration 322 (2009) 513–523 515
t ¼ ot, o ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E=rl2

q
½s�1�, d�2 ¼ EI=Ml3o2, z ¼ z�=l and x ¼ x�=l ðz� and x� are dimensional coordinates).

Parameters of the beam: mass M ½kg�, density r ½kg=m3�, length l ½m�, modulus of elasticity E ½N=m2� and the

inertial momentum of cross–section I ½m4� and damping coefficient g ½1=s� are constant, whereas, piðx; tÞ
describes the signal transmitted by the ith oscillator to the beam, i.e., the dynamical reaction from the ith
oscillator transmitted to the beam.

We assumed an identity for the suspended oscillators, i.e., mi ¼ m and Oi ¼ O. As an example we consider
the double-well potential Duffing oscillator described by

m

M

d2yi

dt2
þ d�2g

dyi

dt
� d�2b1yi þ d�2b2y

3
i ¼ f cos Zt (3)

where y ¼ y�=l, g ¼ dyol3=EI , b1 ¼ kyl3=EI , b2 ¼ kdl5=EI , f ¼ F=Mo2l and Z ¼ O=o. Real parameters of
the oscillators are mass m ½kg�, damping dy ½Ns=m�, linear ky ½N=m� and nonlinear kd ½N=m3� parts of spring
stiffness, amplitude F ½N� and frequency O ½1=s� of excitation. The unexcited oscillators (3) (f ¼ 0) have three
equilibria: unstable for y0 ¼ ð0; 0Þ and two stable for y�1 ¼ ð�

ffiffiffiffiffiffiffiffiffiffiffiffi
b1=b2

p
; 0Þ and yþ1 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffi
b1=b2

p
; 0Þ. In the

periodic regime (fa0), Eq. (3) shows bistability as two different periodic attractors coexist in the
neighbourhood of y�1 and yþ1. The transition from the periodic behaviour to the chaotic one is associated
with the homoclinic bifurcation. The stable limit cycle surrounding one of the non-zero equilibrium points
collides with the homoclinic separatrix and a chaotic double-well attractor is created [17].

Thus, the expression piðx; tÞ on the right-hand side of Eq. (2) is given as follows:

piðx; tÞ ¼
d�2g

dyi

dt
�

dzðxi; tÞ
dt

� �
� d�2b1ðyi � zðxi; tÞÞ þ d�2b2ðyi � zðxi; tÞÞ

3 for x ¼ xi

0 for xaxi

8><
>: (4)
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K. Czo!czyński et al. / Journal of Sound and Vibration 322 (2009) 513–523516
The next assumption is that the beam is simply supported at both ends and so we have the following
boundary conditions: zð0; tÞ ¼ 0, zðl; tÞ ¼ 0, d2zð0; tÞ=dx2 ¼ 0 and d2zðl; tÞ=dx2 ¼ 0.

In our study, Eq. (2) has been discretised in such a way that the continuous beam of the mass M was
replaced by the massless beam on which n̂ discrete identical bodies of mass u are located, i.e., n̂u ¼M. The
number of discrete masses has been selected in such a way as to obtain the first two eigenfrequencies of the
continuous and discrete beam approximately equal. In our numerical simulations we assumed for the sake of
simplicity that n̂ is equal to the number of oscillators, i.e, n ¼ n̂ which are attached to the beam. The
considered discrete model is shown in Fig. 1(b).

The discertisation is based on flexibility coefficients method [18]. The stiffness of the beam fulfils the relation
½k� ¼ ½a��1, where ½a� is the n� n dimensional matrix of flexibility coefficients and it is dependent on the quantity
EJl and the location of masses u. Hence, from the result of such a discretisation we obtain the following equation
describing the dynamics of the ith 2 dof segment (masses u and m, i ¼ 1; 2; . . . ; n) of the system:

m

M
€yi þ d�2gð _yi � _ziÞ � d�2b1ðyi � ziÞ þ d�2b2ðyi � ziÞ

3
¼ f cos Zt

€zi þ
g

o
_zi þ nd�2

P
j

aijzj

 !
¼ nd�2ðgð _yi � _ziÞ � b1ðyi � ziÞ þ b2ðyi � ziÞ

3
Þ

(5)

where ½a� ¼ ½k�l3=EJ.
In the numerical analysis we assumed the mass of each oscillator m ¼ 1:0 ½kg� and the following

dimensionless parameters of the Duffing oscillators (2) g ¼ 8:4, b1 ¼ 25, b2 ¼ 25, f ¼ 0:21 and Z ¼ 1:0. For
this set of parameters each oscillator evolved on the chaotic attractor before they started to interact with the
beam [19]. We also took g=o ¼ 1:0 and considered d to be a bifurcation parameter. Physically, by changing d
we change the beam mass M without altering its stiffness EI, length l and frequency o. We assumed that the
oscillators were located symmetrically on the beam. Two particular but representative cases of two (n ¼ 2) and
five (n ¼ 5) oscillators have been considered.

3. Making the Duffing oscillators periodic

3.1. Two oscillators

In Fig. 2(a–d) we show the bifurcation diagrams yi (the values of yi at t ¼ 2pn=Z, n ¼ 1; 2; . . . have been
considered) versus d, thus illustrating the behaviour of two oscillators suspended on the beam for an increasing d
(Fig. 2(a)) and for a decreasing d (Fig. 2(b)). The corresponding two largest Lyapunov exponents are shown in
Figs. 2(c and d), respectively. In the calculations of the bifurcation diagrams shown in Figs. 2(a–d) we have
started with the initial conditions zðx; 0Þ ¼ dzðx; 0Þ=dt ¼ 0, dy1ð0Þ=dt ¼ dy2ð0Þ=dt ¼ dy3ð0Þ=dt ¼ d4ð0Þ=dt ¼
d5ð0Þ=dt ¼ 0, y1ð0Þ ¼ 0:1, y2ð0Þ ¼ 0:2, y3ð0Þ ¼ 0:3, y4ð0Þ ¼ 0:4, y5ð0Þ ¼ 0:5 for the first (Figs. 2(a and c)) and
the last (Figs. 2(b and d)) values of the d parameter, respectively, d ¼ 0 and 500 and then we have used the last
point of each calculation as the initial condition for the next d parameter value. The phase shows y1 versus y2

for chosen values of d and are shown in Figs. 3(a–c). In the case of an increasing d (Fig. 2(a)) for low values of d,
the oscillators behave periodically and are synchronized, i.e., y1 ¼ y2 and _y1 ¼ _y2. The evolution of both
oscillators is restricted to the synchronization manifold y1 ¼ y2, as shown in Fig. 3(a). The synchronization is lost
at d ¼ 250 (Fig. 3(b)). But the oscillators are still periodic as the two largest Lyapunov exponents shown in
Fig. 2(c) are negative. For larger values of the control parameter (d4380), the behaviour of the oscillators becomes
uncorrelated and chaotic as can be seen in Fig. 3(c). This fact is confirmed by a sudden jump of Lyapunov
exponents to positive values (Fig. 2(c)). On the other hand, when d decreases (Figs. 2(b and c)), the oscillator
behaviour becomes periodic at d ¼ 360 but the synchronization is not observed. Thus, a hysteretic effect occurs.

3.2. Five oscillators

Now, let us consider a system with 5 (n ¼ 5) oscillators located on an elastic beam. In Figs. 4(a–d) we show
the bifurcation diagrams yi (i ¼ 1:::5) versus d, illustrating the behaviour of five oscillators suspended on a
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Fig. 2. Bifurcation diagrams y1;2 versus d for Eq. (5), n ¼ 2 (two oscillators): m ¼ 1:0 ½kg�, f ¼ 0:21, Z ¼ 1:0, g=o ¼ 1:0, g ¼ 8:4, b1 ¼ 25,

b2 ¼ 25, zðx; 0Þ ¼ dzðx; 0Þ=dt ¼ 0, dy1ð0Þ=dt ¼ dy2ð0Þ=dt ¼ dy3ð0Þ=dt ¼ dy4ð0Þ=dt ¼ dy5ð0Þ=dt ¼ 0, y1ð0Þ ¼ 0:1, y2ð0Þ ¼ 0:2, y3ð0Þ ¼ 0:3,
y4ð0Þ ¼ 0:4, y5ð0Þ ¼ 0:5; (a) d increases and (b) d decreases. The two largest Lyapunov exponents when d increases (c) and d decreases (d).
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beam for an increasing d (Fig. 4(a)), and for a decreasing d (Fig. 4(b)). The corresponding five largest
Lyapunov exponents are shown in Figs. 4(c and d), respectively. It results from the geometrical symmetry of
the system that Duffing oscillators can synchronize completely in symmetrically located pairs only, i.e, y1 ¼ y5

and y2 ¼ y4, because only 2 dof (zi; yi) subsystems connected with these oscillators are identical. Thus, we can
observe the clusters of synchronized subsystems. In the case of an increasing d (Fig. 4(a)) for its low values, the
oscillators behave periodically and are synchronized symmetrically in pairs. The complete synchronization is
lost at d ¼ 350. The oscillators are still periodic as the five largest Lyapunov exponents shown in Fig. 4(c) are
negative. In this region of d the oscillators are synchronized in phase. For larger values of the control
parameter (d4415), the behaviour of the oscillators becomes uncorrelated and chaotic. This fact is confirmed
by a sudden jump of four Lyapunov exponents to positive values (Fig. 4(c)). On the other hand, when d
decreases (Figs. 4(b and c)), the oscillator behaviour becomes periodic at d ¼ 417 but the synchronization is
not observed. One can notice that the dynamical phenomena observed in the system with 5 oscillators are
qualitatively similar to the one observed for the case of two oscillators.

In Figs. 5(a–c) the corresponding modes of the beam with the time diagrams of the mass u3 oscillations are
demonstrated. All the presented modes have been detected for the moment of maximum displacement of the
mass u3. We can observe that the harmonic mode of the beam oscillations (Fig. 5(a)) is associated with the
periodic motion of the Duffing oscillator in the periodic synchronous regime and the unharmonic periodic
motion of the beam (Fig. 5(b)) is observed for the periodic nonsynchronous behaviour of the Duffing
oscillators. The uncorrelated chaotic mode of the beam response is associated with the chaotic behaviour of
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the oscillators. Such a situation is clearly depicted in Fig. 5(c), where three forms of beam deflection randomly
detected during chaotic motion are shown.

4. Multistability

A comparison of Figs. 2(a and b) shows the dynamical hysteresis in the neighbourhood of d ¼ 250 and the
multistability (coexistence of different attractors) for smaller values of d. In the considered system in the case
of the periodic behaviour of both oscillators, four different attractors (modes of oscillations) are possible: (i)
both oscillators evolve around the upper stable fixed point, (ii) both oscillators evolve around the lower stable
fixed point and, (iii) the left oscillator evolves around the lower stable fixed point while the right one around
the upper stable fixed point and (iv) the opposite case to situation (iii) takes place. Modes (i) and (ii), in which
both oscillators are synchronized, are symmetrical. On the other hand, modes (iii) and (iv) can be treated as
cases of anti-synchronization.

All modes together with the initial conditions which guarantee their appearance are shown in Fig. 6(a). The
range of initial conditions leading to each mode is indicated, respectively, in light grey, dark grey, white and
black. In our calculations we took zðx; 0Þ ¼ dzðx; 0Þ=dt ¼ 0, dy1ð0Þ=dt ¼ dy2ð0Þ=dt ¼ 0 and allowed y1ð0Þ and
y2ð0Þ to vary in the interval ðy1ð0Þ; y2ð0ÞÞ 2 ½�1; 1� � ½�1; 1�. At d ¼ 250, symmetrical modes (i) and (ii)
disappear. The initial conditions leading to two surviving modes ((iii) and (iv)) are shown in Fig. 6(b).
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Fig. 4. Bifurcation diagrams y1;2 versus d for Eq. (5), n ¼ 5 (five oscillators); m ¼ 1:0 ½kg�, f ¼ 0:21, Z ¼ 1:0, g=o ¼ 1:0, g ¼ 8:4, b1 ¼ 25,

b2 ¼ 25; (a) d increases and (b) d decreases. Two largest Lyapunov exponents when d increases (c) and d decreases (d).
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The structure of this figure shows a fractal-like nature, i.e., there exist regions in the phase space where small
uncertainty of the initial conditions can lead the system behaviour to different attractors.

Multistability is more visible in the case of 5 oscillators, because the variety of different attractors is larger.
The comparison of Figs. 5(a and b) shows the dynamical hysteresis in the neighbourhood of d ¼ 350 and the
coexistence of a number of different attractors for smaller values of d. In the considered system in the case of
periodic behaviour of the oscillators 32 attractors (for arbitrary n, the number of possible attractors is 2n) are
possible as each oscillator can evolve around either upper or lower equilibria.

In our systems inside each cluster, i.e., for oscillators 1 and 5 or 2 and 4 four different attractors (modes of
oscillations) are possible; (i) both oscillators evolve around an upper stable fixed point, (ii) both oscillators
evolve around a lower stable fixed point, (iii) the oscillator evolves (1 or 2) around a lower stable fixed point
while the oscillator (5 or 4) evolves around an upper stable fixed point and, (iv) opposite to case (iii). In modes
(i) and (ii) both oscillators are synchronized.

All vibration modes of the external cluster (y1 ¼ y5) together with the basis of initial conditions which
guarantee their appearance are shown in Fig. 7(a). The range of initial conditions leading to each mode is
indicated, respectively, in light grey, dark grey, white and black. In our calculations we took
zðx; 0Þ ¼ dzðx; 0Þ=dt ¼ 0, dy1ð0Þ=dt ¼ dy2ð0Þ=dt ¼ dy3ð0Þ=dt ¼ dy4ð0Þ=dt ¼ dy5ð0Þ=dt ¼ 0, y2ð0Þ ¼ y3ð0Þ ¼
y4ð0Þ ¼ 0 and allowed y1ð0Þ and y5ð0Þ to vary in the interval ðy1ð0Þ; y5ð0ÞÞ 2 ½�1; 1� � ½�1; 1�. This is a probe
scheme: to observe all possible positions of oscillators other pairs of initial conditions have to be taken.
At d ¼ 350 symmetrical modes (i) and (ii) disappear. The initial conditions leading to the two survived modes
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Fig. 5. Modes of the beam oscillations and the corresponding time diagrams of the mass u3 oscillations for Eq. (5), n ¼ 5 (five oscillators);

m ¼ 1:0 ½kg�, f ¼ 0:21, Z ¼ 1:0, g=o ¼ 1:0, g ¼ 8:4, b1 ¼ 25, b2 ¼ 25; (a) harmonic d ¼ 100, (b) unharmonic periodic d ¼ 275, (c) chaotic

d ¼ 425. All the presented modes have been detected for the moment of the maximal displacement of the mass u2.

Fig. 6. Initial conditions leading to different attractors for Eq. (5), n ¼ 2 (two oscillators); the range of initial conditions leading to each

mode is indicated, respectively, in light grey, dark grey, white and black, zðx; 0Þ ¼ dzðx; 0Þ=dt ¼ 0, dy1ð0Þ=dt ¼ dy2ð0Þ=dt ¼ 0;

m ¼ 1:0 ½kg�, f ¼ 0:21, Z ¼ 1:0, g=o ¼ 1:0, g ¼ 8:4, b1 ¼ 25, b2 ¼ 25; (a) d ¼ 248 four attractors exist and (b) d ¼ 252 two attractors exist.
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Fig. 7. Initial conditions leading to different attractors in external cluster x1; x5 for Eq. (5), n ¼ 5 (five oscillators); the range of initial

conditions leading to each mode is indicated, respectively, in light grey, dark grey, white and black, zðx; 0Þ ¼ dzðx; 0Þ=dt ¼ 0,

dy1ð0Þ=dt ¼ dy2ð0Þ=dt ¼ dy3ð0Þ=dt ¼ dy4ð0Þ=dt ¼ dy5ð0Þ=dt ¼ 0, y2ð0Þ ¼ y3ð0Þ ¼ y4ð0Þ ¼ 0; m ¼ 1:0 ½kg�, f ¼ 0:21, Z ¼ 1:0, g=o ¼ 1:0,
g ¼ 8:4, b1 ¼ 25, b2 ¼ 25; (a) d ¼ 325 four attractors exist and (b) d ¼ 375 two attractors exist.
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((iii) and (iv)) are shown in Fig. 7(b). The structure of this figure shows a fractal-like nature, i.e., there exist
regions in the phase space where a small uncertainty of the initial conditions can lead the system behaviour to
different attractors. Identical topology of basins of attraction (Figs. 4(a and b)) can be observed for the second
pair of oscillators y2 and y4 (internal cluster).
5. Chaotic beating

In order to demonstrate the phenomenon of chaotic beating the case of n ¼ 2 oscillators is considered. Let
us assume that the frequencies of excitation in both oscillators (n ¼ 2) are slightly different, i.e., Z1 � Z2 ¼ �,
where �51. In this case the evolution of system (5) is presented in Fig. 8(a–d). A mismatch in excitation
frequencies Z1 and Z2 introduces a qualitative change in the system behaviour as the periodic behaviour is
replaced by a quasiperiodic behaviour, i.e. coexisting limit cycle attractors are replaced by torus attractors.
In this case one observes a beating behaviour shown in Figs. 8(a and b) (d is equal to 50 and 58,
respectively, � ¼ 0:003). It should be noted here that when Z1 and Z2 are commensurate, it is possible to define
the period of the beating Tb as indicated in Fig. 8(a). Tb is equal to 2p=�, i.e., as known in the linear theory of
oscillations [20].

With an increase of the control parameter d, the basins of attraction of two coexisting torus attractors
merge together (boundary crisis bifurcation) and are replaced by one strange chaotic attractor as shown in
Figs. 8(c and d) (d is equal to 59 and 125, respectively). Our numerical studies indicate that two previously
coexisting torus attractors become repellers embedded into this strange chaotic attractor, as shortly after this
bifurcation one can observe a crisis-induced (chaos–chaos) intermittency [21–24]. The system evolution is
characterised by long-time intervals of evolution on one of the repellers and short–time intervals of jumps
between repellers (Fig. 8(c)). With a further increase in d, the intervals of the evolution on the repellers become
shorter as can be seen in Fig. 8(d) and finally disappear at d ¼ d0 ¼ 128:75. Let t� be the average length of the
time-interval, in which the jumps between repellers can be observed. The scaling relation t� versus d0 � d fulfils
the following relation:

t� / ðd� d0Þ
�a� ,

where a� has been estimated as being equal to 0:23� 0:01 which is characteristic of the crisis-induced
(chaos–chaos) intermittency [25]. In numerical calculations of the scaling factor a� we considered the average
of 1000 simulations for randomly chosen initial conditions.
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6. Conclusions

To summarise, we have investigated the possibility of synchronization of nonlinear chaotic oscillators
located on (coupled through) an elastic structure. In the numerical study we have considered a realistic model
of two double-well potential chaotic Duffing oscillators suspended on an elastic beam. We have identified the
phenomenon of making the oscillators behave periodically, in which their behaviour becomes periodic as a
result of an interaction with the elastic structure. For low values of d all oscillators synchronize in phase and
the symmetrical oscillators perform complete synchronization creating clusters. The phenomenon of making
the oscillators behave periodically leads to multistability as, depending on the parameter d, two or four
different attractors coexist. In the case of a mismatch of the excitation frequency Z1;2 in each oscillator we have
observed a chaotic beating-like behaviour. We have shown an analogy of the observed behaviour to the
phenomenon of beating known from the linear theory of oscillations and to the crisis-induced (chaos–chaos)
intermittency.

The dynamical response of the beam has not been the main subject of interest in the presented paper.
However, a strict connection between the beam response and oscillators dynamics has been confirmed by our
numerical analysis. The regular modes of the beam oscillations are corresponding to the periodic behaviour of
Duffing oscillators and a chaos–chaos mutual relation between the beam and the oscillators can be observed in
the chaotic range.

Qualitatively similar results have been observed for different beam discretisations and a different number of
oscillators. Particularly, we increased the number of discrete mass elements on the massless beam m and
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performed the parallel simulation carried out by means of the finite element method FEM. The phenomenon
of making the oscillators behave periodically can also be observed in the case when the oscillators are not
located symmetrically on the beam [15,16]. Our results allow us to argue that the observed phenomena are
generic in the parameter space, independent of the number of oscillators, their location on the elastic structure
and the method of discretisation of the beam.
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